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(57) ABSTRACT

Methods and apparatuses for estimating brain activity of a
human subject from the measurement of electroencephalo-
grams (EEG) are disclosed. In one method, cortical neural
sources in the cerebral cortex of the brain of the subject are
specified. Next, using a model of the human brain which
treats the cortical neural sources as nodes in a cortical source
network, cortical source activations are estimated from the
measured electroencephalograms for each of the cortical neu-
ral sources in the network for the subject. Source network
modulation control signals are then determined for the sub-
ject from the cortical source activations which are assumed to
correspond to control modulators in the human brain. And a
network activity classification is computed from determined
modulation control signals for the subject. The innovative
technology may be included in an automated aiding system in
the electronic aiding of tasks performed by human operators.
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1
NODE EXCITATION DRIVING FUNCTION
MEASURES FOR CEREBRAL CORTEX
NETWORK ANALYSIS OF
ELECTROENCEPHALOGRAMS

GOVERNMENT INTEREST

Governmental Interest—The invention described herein
may be manufactured, used and licensed by or for the U.S.
Government.

RELATED APPLICATION(S)

This patent application is related to U.S. patent application
Ser. No. 14/499,625 filed Sep. 29, 2014, titled “METHOD
AND APPARATUS FOR ESTIMATING CEREBRAL
CORTICAL SOURCE ACTIVATIONS FROM ELECTRO-
ENCEPHALOGRAMS,” herein incorporated by reference in
its entirety.

FIELD OF INVENTION

Embodiments of the present invention generally relate to
determining brain activity from scalp site recorded electro-
encephalograms.

BACKGROUND OF THE INVENTION

Brain activity is commonly determined from electroen-
cephalograms (EEG) measurements from multiple electrodes
positioned on scalp sites over the subject’s head, with signals
from the electrodes fed to an EEG data collection system.
Following artifact rejection (typically performed), signal
analysis of electroencephalograms (EEG) measurements
using short-term Fourier analysis or wavelet analysis pro-
duces a time-frequency spectral data analysis for the sites.
The spectral results may be decomposed into spectrum band
power; spectrum coherence computed from the power spec-
tral matrix; and causality for the coherence between the sites
as a network such as Granger causality.

Further refinement in decompositions where there is spec-
trum coherence (as a measure of mutual synchronicity among
sites), may be decomposed into different measures of the
Granger causality for the direction of information flow among
sites. These measures include the directed coherence (DC),
which is defined as the ratio of the spectral transfer function
between two sites, and the square root of the auto power of
one of the sites; and still further, the directed transfer function
(DTF).

In further developments, graph theory measures are
applied for analysis of the sites as nodes of a network, by
using small world network metrics computed from the cross-
correlation matrices for the sites, such as node degree (aver-
age number of connections nodes), clustering coefficient (ra-
tio of existing connections to all possible), diameter (shortest
path between nodes), and efficiency (measure of number of
parallel connections among nodes), among others. In experi-
mental studies, statistical analysis may be applied to these
measures by treatments for study results.

While these conventional methods are of interest to the
research community, they are commonly of low statistical
power as shown by sometimes conflicts in replication of study
results. This is because the statistics used in these studies
analyzes the power spectrums for the sites and the coherences
between the sites (or derivations thereof), as separate statis-
tical measures. This conventional methodology canresultina
large number of measures; for instance, there are at least 2030
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separate measures for a study with a 64-electrode scalp site
EEG data collection system (an analysis of signals from N
scalp sites conducted separately would involve N-power
spectrums and N*(N-1)/2 coherence spectrums). Further-
more, the analyses are commonly conducted separately by
frequency bands of which there are at least four considered in
the EEG spectrum: delta, alpha, beta, and gamma, although
the study may be limited to a single band. This large number
of measures severally reduces the overall statistical power of
any analysis and increases the family-wise Type I error (that
is, error in accepting the analysis as significant). Of further
concern is that these measures are all from same data source
and being highly correlated are redundantly a single measure;
it is suspect to include all as separate dependent measures in
conventional statistical methods (such as multiple analysis of
variance), thereby increasing the probability that results are
incorrectly significant by chance alone.

Therefore, if measurement of electroencephalograms
(EEG) with a scalp site electrode EEG data collection system
is to be useful in real-life applications (such as in moving
vehicles with operator control), there is a need in the art for a
method and apparatus for generating a global measure for
electroencephalograms (EEG) analysis. Further, there is an
advantage in the extension of such a global measure to cere-
bral sources of the scalp site electroencephalograms (EEG),
with the sources located by cortical structure that form cere-
bral networks relatable to cognitive functions.

BRIEF SUMMARY OF THE INVENTION

Embodiments of the present invention provide methods
and apparatuses for estimating brain activity of a human
subject from the measurement of electroencephalograms
(EEG) using scalp site electrodes attached to the subject’s
scalp and an EEG data collection system. In an exemplary
embodiment, a method comprises: specifying a plurality of
cortical neural sources in the cerebral cortex of the brain of
the subject; using a model of the human brain which treats the
cortical neural sources as nodes in a cortical source network,
estimating cortical source activations from the measured
electroencephalograms for each of the cortical neural sources
in the network for the subject; determining source network
modulation control signals for the subject from the cortical
source activations which are assumed to correspond to con-
trol modulators in the human brain; and computing a network
activity classification from determined modulation control
signals for the subject.

Estimating the cortical source activations may include
applying a node-excitation driving function, where each node
is assumed to constitute an activation function formed from
weighted inputs, a node-excitation driving function, and an
emitter function formed from weighted outputs. The node-
excitation driving function can be computed from a multivari-
ate spectral analysis of the network node excitations, where
the spectral analysis follows from autoregressive coefficients
and the noise covariance resulting in node power spectrums
and inter-node transfer functions. For example, the node-
excitation driving function may be computed as the ratio of
the node partial spectral power and the node activation func-
tion, and the node activation function is computed as the sum
of the spectral power inputs weighted by the corresponding
normalized transfer functions. The modulation control sig-
nals of the network control modulation nodes are determined
from the network node-excitation driving functions. The net-
work activity classification can be made as to the level of
activity from the modulation control signals of the network
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control modulation nodes, as derived from the network
source node-excitation driving functions for the cortical
source activations.

The network activity classification can also be made as to
task nature from the topological organization as derived from
the network source node excitation driving functions for the
source activations. For instance, the networks are cortical
attention networks include task default, task focus, task
involvement, or any combination thereof. The network activ-
ity classification is made to task functional activity by map-
ping the network cortical sources to the cortical structure of
the brain as cortical functional network nodes related to cog-
nitive functions, including at least to the structural level of the
Brodmann Area regions of the cortex with associated cogni-
tive functions. And the network activity classification might
be made to task functional activity level from the cortical
structures of the cortical functional network as derived from
the network source node excitation driving functions for the
corresponding source activations.

In a further embodiment, an apparatus having a plurality of
electronics modules to execute the aforementioned method is
provided. Also, the apparatus may be incorporated as a com-
ponent of an automated task aider used to estimate the task
attention of the subject.

These and other embodiments are explained below in fur-
ther detail.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the present invention can be understood in detail, a more
particular description of the invention, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated in the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this invention and are therefore not to
be considered limiting of its scope, for the invention may
admit to other equally effective embodiments. These embodi-
ments are intended to be included within the following
description and protected by the accompanying claims.

FIG.1is a schematic of electroencephalogram reduction to
cortical source network which is used in a methodology for
estimating brain activity of a human subject according to an
embodiment;

FIG. 2 is a flow chart of process for reducing encephalo-
gram to cortical source network;

FIG. 3 is a schematic of International 10-20 electrode
system scalp sites;

FIG. 4 is a schematic showing method for isolating
encephalogram sources;

FIG. 5 is a schematic of cortical sources as a multivariate
network showing interactions among sources;

FIG. 6 is a schematic of a multivariate autoregressive pro-
cess;

FIG. 7 is a flow chart of multivariate spectral analysis;

FIG. 8 is a flow schematic of node excitation driving func-
tion with relations to spectral parameters;

FIG. 9 is a flow chart of process for computing node exci-
tation driving functions from spectral parameters;

FIG. 10 is a flow chart of source network analysis using
node excitation driving functions;

FIG. 11 is a schematic showing representative electrode
sites and corresponding cortical source network with network
modulators superimposed on a median view of the human
cortex with numbered Brodmann Areas;

FIG. 12 is a schematic of experimental study task time-
line;
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FIG. 13 is a flow chart of data processing for study;

FIG. 14 shows a source recursive frequency transfer func-
tion magnitude;

FIG. 15 shows a source recursive frequency transfer func-
tion phase;

FIG. 16 shows a source to second source connectivity
frequency transfer function magnitude;

FIG. 17 shows a source to second source connectivity
frequency transfer function phase;

FIG. 18 shows a source auto-power frequency spectrum;

FIG. 19 shows a source to second source connectivity
cross-power frequency spectrum;

FIG. 20 shows a source recursive normalized directed
transfer function;

FIG. 21 shows a source to second source connectivity
normalized directed transfer function;

FIG. 22 shows a source activation function;

FIG. 23 shows a second source activation function;

FIG. 24 shows source partial power;

FIG. 25 shows second source partial power;

FIG. 26 shows a source node excitation driving function;

FIG. 27 shows a second source node excitation driving
function;

FIG. 28 shows network modulator frequency plots for
event types by conditions;

FIG. 29 shows first modulator event type differences;

FIG. 30a is an error-bar plot for first modulator average by
event types;

FIG. 304 is an error-bar plot for first modulator difference
measure by event types;

FIG. 31a is an error-bar plot for node driving function
average by event types;

FIG. 315 is an error-bar plot for node driving function
difference measure by event types;

FIG. 32 shows a cross-correlation matrix for cerebral
source node excitation driving functions;

FIG. 33 includes tables of network metrics for cerebral
source node excitation driving functions;

FIG. 34 is network node representative sources located in
MRI projection Talairach space;

FIG. 35 is a cortical diagram of node sources located by
Brodmann Areas for stimulus;

FIG. 36 is a cortical diagram of node sources located by
Brodmann Areas for reaction;

FIG. 37 is a cortical Network flow of node sources by
Brodmann Areas for cortical reaction;

FIG. 38 is a schematic of modular components of invention
for use in application to automatic aiding;

FIG. 39 is a flow chart showing the training sequence
method in detail;

FIG. 40a is a flow chart of training process of invention for
use in automatic aiding;

FIG. 404 is a flow chart of application process of invention
for use in automatic aiding;

FIG. 41 is a schematic of classifier module of an embodied
as an expert system with knowledge base and inference
engine; and

FIG. 42 is schematic of automatic aiding configuration for
operator in autonomous system according to an embodiment.

DETAILED DESCRIPTION OF THE INVENTION

An innovative methodology for estimating brain activity of
a human subject from the measurement of electroencephalo-
grams (EEG) with a scalp site electrode EEG data collection
system where multiple electrodes are positioned on scalp
sites on the head of the subject is disclosed. The methodology
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uses a novel model of the human brain which treats a network
of cerebral cortical sources in the brain as nodes and that
assumes that node-excitation driving functions for the nodes
can be determined from EEG measurements. The node-exci-
tation driving functions are computed from independent com-
ponent analysis and parameterized by multivariate spectrum
analysis of the time-series network that is formed by the
nodes of the cortical network. The spectrum measures of the
cortical network are reduced to a global measure of the net-
work-node effects by combining the node power and the
coherences between the nodes (as a measure of the degree that
the node oscillations maintain a fixed relation to each other),
into a single node excitation function for each node.

Depending upon the value of the network modulation, the
excitation functions of the nodes may be used as network
metrics to determine the state of the cognitive processing by
the network, where the cortical sources are assumed to be
cortical structures relatable to cognitive functions. Further,
source network modulation control signals are determined
from the cortical source activations which are assumed to
correspond to control modulators in the brain. And a network
activity classification is established from determined modu-
lation control signals.

A key advantage of this invention over the prior art is that
a global measure is generated for the node network along with
a single effect measure for each node, thereby increasing the
statistical power of the application, and that the global mea-
sure is relatable to cognitive functions through the node effect
measures. On that basis, one exemplary application is as a
component of an automated aiding system in the electronic
aiding of tasks performed by human operators by providing
an estimate of brain functions from electroencephalogram
measurements.

FIG. 1 depicts an exemplary schematic of electroencepha-
logram reduction to a cortical source network which is used in
a methodology for estimating brain activity of a human sub-
ject according to an embodiment. One key premise of the
innovative methodology is that specific activation of cerebral
cortex networks in the human brain can be properly estimated
using novel modeling of the node excitation driving func-
tions. The node excitation driving function combines the node
power and coherences into a single measure for a plurality of
cortical sources of the network that can be derived from
electroencephalograms (EEG) measurements. In turn, modu-
lation sources for the networks are derived from the driving
functions to classify brain network activity.

Referring to FIG. 1, a plurality of scalp site electrodes 110
(labeled E1, E2, E3 . . . in the figure) are attached to the
subject’s scalp 120 for recording electrical signals collected
by the electrodes 110. In actuality, ten (10) twenty (20), or
even more electrodes are typically attached to the scalp 120.
Conducting gel may be further applied at the electrode sites to
help to conduct electrical signals from the scalp 120 to the
electrodes 110. The electrodes 110 are placed in a generally
distributed manner at spaced locations across the surface of
the scalp 120. The electrodes 110 may be sewn or otherwise
provided in a fabric cap (not shown) which the subject wears.
Alternatively, the electrodes 110 may be removably attached
to the scalp 120 with a glue or adhesive which can be washed
away with a suitable solvent, such as acetone.

In one embodiment, the electroencephalograms are col-
lected from scalp surface electrode sites according to the
International 10-20 electrode system standard or extensions
thereof which are commonly used for locating electrode
placement on the scalp in preparation for EEG recordings.
The EEG electrodes 110 measure electrical signals produced
by the brain neurons near the scalp which originate in the
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cerebral cortex of the brain. The cerebral cortex is the outer-
most layered structure of neural tissue of the brain. The cere-
bral cortex plays an important role in many cognitive func-
tions, including memory, attention, perception, awareness,
thought, language, and consciousness.

Electrical signals detected by the scalp site electrodes 110
are feed to a computing device for signal source analysis 130.
The analysis 130 models a cortical network 140 to multiple
network modulators 150 in the subject’s brain. The cortical
network 140 is composed a plurality of interconnected corti-
cal sources 145 (labeled S1, S2, S3 . . . in the figure). The
cortical sources 145 represent discrete groups of neurons in
the cortex of the subject’s brain which have nearly identical
receptive fields and function, and that grouped together are
assumed to be located in Brodmann Areas in the brain.

As known, Brodmann Areas are regions of the cerebral
cortex having the same cytoarchitectural organization of neu-
rons as originally defined and numbered by German neurolo-
gist Dr, Korbinian Brodmann in 1909. There are some 52
Brodmann areas which have been defined in human and non-
human primates brains associated with various cognitive
functions, although not all are present or used in human
brains. So-called “Brodmann atlases™ or “Brodmann maps”
are available which depict the various Brodmann areas in the
brain and indicate their functions.

Brodmann Areas have been mapped to specific locations in
the human brain. One way to do this is using Talairach space,
a known 3-dimensional coordinate system of the human
brain, which is used to map the location of brain structures
independent from individual differences in the size and over-
all shape of the brain, with Brodmann areas as labels for both
lateral and median surface brain regions (as derived by Jean
Talairach and Gabor Szikla in 1967). Talairach space repre-
sents a standardized atlas or grid for mapping the human
brain, which defines standard anatomical landmarks that
could be identified on different individuals. An individual’s
brain image obtained through Magnetic Resonance Imaging
(MRI), positron emission tomography (PET) and other brain
imaging methods can be mapped to this standard Talairach
space using conventional software applications. For example,
atlases, such as the Talairach Daemon and CARET (Comput-
erized Anatomical Reconstruction Toolkit) applications can
approximate between three-dimensional locations in the
brain and Brodmann Areas. Another way is through Montreal
Neurological Institute (MNI) standard brain coordinate sys-
tem, which is based on studies of Magnetic Resonance Imag-
ing (MRI) data for a large number of persons. This latter
technique is supposedly more representative of the popula-
tion. There are various known functions for converting MNI
standard brain coordinate system to Talairach space.

Inthe present methodology, not all Brodmann areas need to
be used as cortical sources 145. One may choose to select a
subset of one or more Brodmann areas which correspond to
one or more cognitive functions of interest. The cortical
sources 145 which are assumed to correspond to Brodmann
area locations in the subject’s brain can be mapped to a
standard cortical space coordinate system, like Talairach
space or MNI standard brain coordinate system. In further
embodiments, the cortical sources 145 may be derived in a
functional MRI brain study for the individual subject to iden-
tify regions linked to critical cognitive functions, such as
speaking, moving, sensing, or planning, among others. In
turn, the individual results may be again mapped to a standard
cortical space for location as Brodmann Areas.

Connectivity of the cortical sources 145 is identified as
signals 160. Because of this interconnectivity, the scalp site
electrodes 110 are believed to measure electrical signals
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which actually represent the combination of multiple signals
originating from various cortical sources 145 in the brain.

Accordingly to the model, each of the cortical sources 145
of'the network 140 can be considered a node and that a driving
function exists for that node which can characterize the effect
of the interconnectivity 160 among the various modulating
sources 155 in the network 150 as further explained herein.

The network of modulators 150 is composed of indepen-
dent modulating sources 155 (labeled M1, M2, . . . in the
figure) within the brain. Signals 156 from the modulating
sources 155 affect the cortical sources 145. At this time, there
is no way of specifically knowing the exact source network
modulators in the human brain, only of determining the level
of the control signals based on the novel independent com-
ponent methodology applied to the cortical source driving
functions. With a greater understanding of the interworking
of the human mind, in the future, perhaps the specific source
network modulators can be more accurately determined.
Nonetheless, the innovative methodology provides a much
greater understanding of the influence of the cognitive modu-
lators on EEG measurements for an individual.

FIG. 2 is a flow chart of the innovative methodology 200
for determining specific brain activity of a subject from the
measurement of electroencephalograms (EEG) according to
an embodiment. The methodology 200 comprises the follow-
ing processes: (1) the encephalograms are collected as volt-
ages samples over a time window period from the electrodes
attached to scalp skin sites in step 205; (2) the scalp signals
are (optionally) corrected for the additions of artifact signals
in step 210 from extra-cerebral sources such as eye-move-
ments, muscle movements, or the environment; (3) the analy-
sis of the scalp signals for the sources of the scalp voltages in
step 215 by blind-source separation of temporal-wise inde-
pendent sources based in some applications on kurtosis of the
source signals; (4) the isolation of the cerebral sources in step
220 from the source set from those of the artifacts by location
of'the sources by scalp site triangulation of the source signals,
and by source signal characteristics of waveforms, amplitude
probability density functions and spectral density functions;
(5) the analysis in step 225 by multivariate spectrum analysis
of the cortical sources as nodes of a cortical network and the
determination of node-excitation driving functions from the
spectral parameters for the sources; and (6) the determination
of network modulation values step 230 from the node-exci-
tation driving functions. Each of these steps is explained in
further detail below.

FIG. 3 is a schematic of a single plane projection of the
human scalp showing nineteen (19) electrode sites of the
International 10-20 electrode system 300 which may be used
in embodiments of the present invention. The International
10-20 system is an internationally-recognized standard to
describe and apply the location of scalp electrodes for EEG
testing.

The various lobes and major fissures of the underlying
brain are also illustrated in the figure for reference. The
human brain is separated into different region (or lobes)
which include the frontal, temporal, central, parietal, and
occipital lobes. The Rolandic fissure is the central sulcus, or
fold, in the brain; it separates the parietal lobe from the frontal
lobe. The Sylvian fissure is the most prominent lateral sulcus
in the brain; it divides both the frontal lobe and parietal lobe
above from the temporal lobe below. It is present in both
hemispheres of the brain but is typically longer in the left
hemisphere in most people.

Two anatomical landmarks are used for positioning the
EEG electrodes on the scalp. These include the Nasion at the
front of the skull and the Inion at the back. The Nasion is the
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distinctly depressed area between the eyes, just above the
bridge of the nose, and the Inion is the lowest point of the skull
from the back of the head and is normally indicated by a
prominent bump. The projections of the Nasion at the front of
the skull and the Inion at the back are illustrated for reference
purposes in the figure.

In this electrode system, the electrode sites are positioned
with respect to the sagittal plane (i.e., the vertical plane that
dividing the body into right and left halves) at 20% intervals
along the scalp mid-line Nasion to Inion distance, with the
frontal site a distance of 10% from the Nasion; and located in
the coronal plane at 20% intervals along the scalp between
points just anterior to the tragus of each ear, with the most
lateral site a distance of 10% from the tragus. The most
forward and lateral sites define a horizontal plane for refer-
ence in electrode placement.

The sites are labeled 310, by letters, correspond to the
underlying cortical lobe structure 320, such as: frontal (F),
temporal (T), central (C), parietal (P), and occipital (O); and,
by number, corresponding to distance from the horizontal
plane, with the even numbers on the right side of the head
(RHS), and the odd numbers on the left side (LHS). It actu-
ality, there exists no central lobe, but the letter C is used
according to the standard. The identifier “z” (zero) refers to
the midline axis of the head. The sites Fpl, Fp2 identify
frontal polar sites. The sites A1 and A2 represent the earlobes
and are for mastoid references used in unipolar electrode
montages. A site labeled ‘G’ may be used for the amplifier
ground in the EEG collection system.

EEG recording caps (not shown) of elastic lightweight
fabric that snugly fit over the subject’s head are commercially
available with electrodes and shielded recording wires for
electrode placement in both standard montages and higher
density electrode configurations, with scalp site preparation
and conducting gel inserted at the electrode sites after fitting.
The electrodes may be combined in different montages for
recording purposes depending upon the purpose of the EEG
study. In bipolar recordings, the electrodes are linked in pairs
to the two inputs of differential amplifiers and the recordings
are the voltage differences between the pairs. In unipolar
(referential) recordings, the electrodes are linked to one input
of'the associated differential amplifiers and the other input of
all amplifiers are linked to a separate reference electrode,
either one of the mastoid sites (or the ear lobes) or the average
of'the two, or a separate site on the scalp or in some cases, the
face or body; the recordings are of the voltage differences
between the exploratory scalp electrodes and that of the ref-
erence. In a further development, the recordings may be
added or subtracted in different combinations for a change in
reference voltage and bipolar or unipolar configurations
depending upon the focus of the study.

In a further embodiment, the recorded EEG is reduced to a
set of cerebral sources generating the scalp voltage recordings
as a set of mixed source signals.

FIG. 4 is a schematic showing the steps in the initial pro-
cessing EEG signals. In some embodiments, the voltage sig-
nals 400 from the scalp surface electrodes (labeled E1, E2,
E3 . . . in the figure) may be pre-processed by band-pass
filtering to remove signal baseline including electrode drift
and high frequency extraneous artifacts. For example, the
signals may be notched filtered as well to remove 60 Hertz
power line noise.

The scalp signal windowed time samples 410 can be cor-
rected for the additions of artifact signals from extra-cerebral
sources, such as eye-movements, muscle movements, or the
environment based on signal waveform extremes of excessive
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amplitude and trend among others, and on excessive low
frequency power contents from eye movements or high fre-
quency from muscle.

For most applications, this preprocessing removes obvious
artifacts; however, a residual usually remains in the signals.
The plot of samples 410 in the upper left of the figure, shows
three signals (x1, x2, x3) measured by the electrodes (E1, E2,
E3), respectively, over time.

The processed signals are next analyzed to determine a set
of'both cerebral (S1, S2) and possible extra-cerebral sources
such as eye-movements, muscle movements, or the environ-
ment (S3) for the scalp voltages, where the outputs of such
added together generate the voltage 420 ata scalp site (N3). In
some embodiments, this determination can be done by blind-
source separation following principal component analysis of
the signals. For example, a method for deriving a set of
temporal independent sources equal in number to the scalp
sites, where the sources are separable by their time-wise
signal amplitude probability moments; commonly, in the
practice this is separation by the probability density function
(PDF) of the source signal amplitude (4” moment) kurtosis
430 for function peakness from that for a Gaussian distribu-
tion. The separation method produces 440 a set of temporally
separated sources (independent components), with time-wise
signals in plot 450 over the sample window (by un-mixing of
the scalp signals), that can used to separate the cerebral
sources (S1, S2. ..) from any extra-cerebral sources (S3) by
signal kurtosis and spectrum, and by source location. In this
application, the power spectral density (PSD) may be com-
puted 455 from the source time-wise signals and the resulting
spectrum distributions shown in plot 460 used to prune the
artifact sources from the cerebral sources. To this purpose, the
kurtosis for an EEG process is commonly Gaussian and the
spectrum density that of Brownian noise (1/frequency?);
peaks may be superimposed for localized theta, alpha or beta
band level processing depending upon the source location.

For example, the spectrum density for an ocular source is
commonly peaked about 2 Hz, while that for a muscle source
is commonly peaked above 30 Hz. Further pruning can be
performed by considering source location relative to the
skull, in which the source is located by triangulation 470 of
the potential from the source(s) received at the scalp sites. In
some embodiments, a 3-shell spherical head model or even a
4-shell spherical head model for the scalp, skull, cerebrospi-
nal fluid, and homogeneous cortex is of the art used to com-
pute the source potential for a forward problem solution at the
scalp sites for a dipole field source. In this process, cerebral
potential sources locate within the cortex (480), while the
ocular potential sources locate about the ocular orbit regions
in the front of the skull, and the muscle potential sources
outside the skull (490); here, with cortical source activation
signals y1 and y2, and extra-cerebral source activation signal
v3. The resulting set of cerebral sources may be further
reduced to a working set by clustering adjacent sources
together as a separate source based on proximity of spectrums
and locations in a source feature space

The electroencephalogram (EEG) may generally be repre-
sented as a white noise driven autoregressive process, in
which the process output is the weighted sum of prior outputs
and a white noise input.

FIG. 5 is a schematic of a model of networked cortical
source nodes according to an embodiment as a time-series
network. The model includes a set of cortical sources 500
arranged as a multivariate autoregressive network 510 show-
ing the various interactions among the sources being charac-
terized as network nodes (N1, N2, N3 . . . ), with modulators
550 controlling the network as a white noise driver.
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The inputs to the nodes are the power of a noise covariance
(c) as weighted by a transfer function (h) for the node con-
nection as determined by an autoregressive analysis. For
example, the node 520 (N3) is shown with a recursive feed-
back loop 530 as input of that node’s output and with inputs
from the outputs from the other nodes 540. Here, for the
recursive loop for the node 520 (N3), the transfer function is
denoted as h33 and the noise covariance as c33. The transfer
function and covariance from node N2 which are input to
node 520 (N3) are h23, c23, respectively. Similarly, the trans-
fer function and covariance from node N1 which are input to
node 520 (N3) are h13, c13, respectively.

Each node is assumed to receive modulator signals (m)
from each and every modulator. For instance, it is assumed
that node 520 (N3) receives modulator signals m13, m23
from modulators M1 and M2, respectively. In the model
illustrated in this schematic, the modulators (M1, M2 . . .)
control the network by the frequency and power of the noise
source signals 560 (m). The other nodes (N1, N2, etc.) in the
network 510 can be similarly characterized as this node in this
manner.

FIG. 6 is a schematic of one multivariate autoregressive
process 600 model of the networked cortical source nodes
according to an embodiment.

The autoregressive process model 600 represents the time-
varying processes of a given cerebral cortex node 610 some of
which specifies the output variable depends on its own pre-
vious values. Here, it is assumed that the output 620 (Yi) of
the given node 610 (Si) is the sum of the random noise input
630 (Ni), the weighted consecutive prior outputs of the node
output 640 (p) in a recursive feedback loop, and the weighted
consecutive prior outputs 650 of a plurality of other nodes 660
(Sj), each with its own output 670 (Yk). The weights are
autoregressive coefficients for the process and the number of
prior outputs is determined by the order of the process. The
multivariate autoregressive process may be applied to the
signals for each node in the network with the results ofa set of
autoregressive coefficients and noise covariance for the inter-
connections among the nodes including the auto-recursive
feedback loop. The spectral quantities for a multivariate spec-
tral analysis are derived in the frequency domain from the
estimated model coefficients and the covariance of the noise.
The spectral power and directed causality measures of the
multivariate signals are readily computed from the spectral
transfer function and covariance. Here, in this representation
of the feedback process, the time delay by element Z~* of the
kth output sample Y is weighted by the a-th factor before
summation, with the summation to the Pth order of the pro-
cess.

FIG. 7 is a flow chart showing the various steps in the
multivariate spectral process 700 according to an embodi-
ment. In brief, the process 700 comprises collecting the node
output signals (y) in an electronic memory in a computing
device (such as a data base) in step 710, performing the
autoregressive analysis on the data in the data base in step 720
to determine the autoregressive coefficients (a) and the noise
covariance (v), computing the node connectivity transfer
functions (h) for the noise covariance in step 730, computing
the connectivity spectral power (S) in step 740, and comput-
ing the connectivity directed transfer functions (d) in step
750. In step 760, the output of the spectral power (S) and
directed transfer functions (d) are used for computing the
node excitation functions described in detail shortly. Here, the
transfer function (H), spectral power (S) covariance (C), and
directed transfer functions (d) are functions of the nodes (M)
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and the frequency (F). The output of process 700 is shown in
block 770. The steps of the multivariate spectral process are in
greater detail as follows:

Step 710: Node output collection—The time-wise outputs
(Y) over the sample window of the selected temporal
independent cortical sources are collected and stored in
an electronic memory or database.

Step 720: Autoregressive process—he process is mod-
eled here as a weighted sum of consecutive prior outputs
plus a random noise, where the order determines the
number of terms in the sum. The process may be
extended to a multivariate process by including
weighted outputs from the other nodes in the model, i.e.,
E=2(A;*Y, ), where the sum is from j=0 to P, with P the
order of the process model, and Y, is the vector of the
K-variable process at the i time, A, constitutes the
K-by-K matrices of model coefficients with A, is the
identity matrix, and E, is the vector of multivariate zero
mean uncorrelated white noise process. The autoregres-
sive parameter weights (A) and the noise covariance (V)
may be estimated for the multivariate dataset (Y), for
example, with the Levinson-Robinson-Wiggins (LWR)
algorithm implemented using the Vieira-Morf Method.
The optimal process order (P) can be estimated from the
multivariate Akaike information criteria (AIC), a func-
tion of the noise covariance (V), the process order (P),
the number of nodes (K), and the data size (N), AIC=—
log(det(V))+2*P*K*/N, with the optimal order value
minimizing the criteria.

Step 730: Spectral transfer function—The process may be
represented as a filter driven by white noise in which the
filter output is modeled as a weighted sum of consecu-
tively delayed prior outputs, where the filter order deter-
mines the number of terms in the sum. The transfer
function spectral magnitude and phase are readily
solved from the estimated model autoregressive coeffi-
cients as a function of frequency, i.e., H{)=1/(Z(A,*(cos
(2mfA)-sin(2nfA)*1)), where the sum is j=0 to P, the
process order, and here A is the time sampling interval
and i=V-1, complex unity; the matrix element H, (D
describes the connection between the ith and jth nodes,
with magnitude [|H, (f)|=abs(H,(f)) and phase,
ph,,(D=angle(H,(f)).

Step 740: Spectral power—The spectral power (S) is esti-
mated from the spectral matrix of the time series data as
calculated by the matrix product of the transfer function
matrix (H(f)), covariance matrix (V), and transposed
conjugate of the function matrix ('), SO=H(H*V*H({)".
The elements of the matrix are functions of frequency (f)
and may be separated into amplitude and phase spec-
trums. The auto power (Pa) of a node (i) equals the
corresponding diagonal element of the spectra matrix,
Pa,(f)=S,,(f), and is a real value magnitude without
phase; while the cross power (Pc) between two nodes (i
and i) equals the off-diagonal element specified by the
row and column for the nodes, Pc,()=S,(f), a complex
value having both magnitude and phase. The partial
power (Pp) for a node accounts for the contribution of
the other nodes to that node and is the power remaining
following normalization as computed by the determi-
nant of the spectral matrix divided by the matrix minor
(determinant of the sub-matrix) for the node, Pp,(f)=det
(SMM, (D).

Step 750: Covariance or Directed causality—The causality
functions measures the direction of influence between
nodes. The Granger causality measure is based on the
assertion that if a series contains information in past
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terms that helps in the prediction of another series, then
the first series is said to cause the second series; an
assumption is made that both are not caused by a third. A
multivariate version of the Granger causality is the
Directed Transfer Function (DTF) which expresses the
ratio of influence of one node on another to the joint
influences of all other nodes to that node; the normalized
DTF is given by the ratio of the square of the transfer
function magnitude for the two nodes divided by the sum
of the squares of transfer function magnitude for that
node with all other nodes, that is: D={d,(f)}, where
d (H=IH,(DOI*EIH,, (D), a sum from m=1 to K, with
K being the number of nodes; a function of frequency
with a value between zero and one.

Step 760: Generating Output—The spectral power matrix
(S) and normalized directed transfer functions (D) are
used to compute the excitation driving functions for the
node sources.

An important aspect of the methodology is the concept of

a node excitation driving function which follows from con-
sidering the network source nodes as neural network proces-
sors each with an activation function formed from weighted
inputs, and a node excitation driving function that generates
the partial power for the node from the activation function.
The node inputs are the cross-power and auto power spec-
trums and the weights are the normalized transfer functions
derived from the multivariate autoregressive analysis of the
network.

FIG. 8 is a schematic showing the relation 800 of the node
excitation driving function to the elements of the spectral
power matrix and normalized directed transfer functions that
are associated with one node. The schematic shows the node
810 (ith node) of the network consisting of a summer 820 in
series with an excitation driving modular 830, where the
inputs to the summer 820 are the cross power outputs 845
(Sc(i,))) from the other nodes 840 (jth node) in the network
and a recursive feedback 850 from the node itself of the node
auto power 855 (Sa(i)), where the powers are elements of the
spectral power matrix for that node. The inputs to the summer
820 are weighted by normalized directed transfer functions
860 (d(i,j) for the connecting links with the node including the
feedback loop. The summer 820 outputs a node activation
function 870 (A(i)) as the sum of the weighted inputs to the
excitation driving modular that with the excitation driving
function 880 (E(i)) generates the partial power 890 (Pp(i)) for
the node from the activation function.

FIG. 9 is a flow chart showing the steps 900 for computing
the excitation driving functions for the network nodes from
the power spectrum matrix and normalized transfer functions
derived from the multivariate autoregressive analysis of the
network. Following initialization of the network node list in
step 910, the cross power and auto power elements of the
spectrum matrix in step 920 for that node along with the
corresponding normalized direct transfer functions in step
930 are used to compute the node activation function in step
940, and in turn the node excitation driving function is com-
puted in step 960 from the node partial power in step 950, a
process that is repeated in steps 980 for all nodes as need in
step 970, where the computations are as follows:

Activation function—The weighted sum of all inputs to the
node including the recursive loop where the inputs are
the input spectrum (S,(f)), and the weights are the nor-
malized directed transfer functions (d,(D): A~
2, (D)*S,(1), j=1:K, that is, all cross-spectrum of the
inputs and the auto spectrum for the ith node.

Node excitation driving function—The partial power
divided by the activation function: D,=Pp,/A,; that is, the

3
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ratio of the partial power of the node normalized by the
activating input. With this definition, the driving func-
tion is a transfer ratio of input to output spectrums that in
turn, is a function of frequency.

In a further embodiment, the set of node driving functions
may be used as a database for analysis of the source network
activities at different levels such as the network performance
state, the task nature of the network from the topological
organization, and the cognitive functioning of the network.

FIG. 10 is a flow chart of an analysis of the source network
1000 using the node excitation driving function database. The
performance state of the network is set by control signals
from modulator sources, and in step 1010, the modulator
sources may be derived by applying blind-source separation
to the database, following Principal Component Analysis to
reduce the number of sources; the results are control signal
power spectrums that may be analyzed for effects as a func-
tion of frequency. Other measures for the state of the network
may be derived directly from the node driving function data
base for comparison as a state classifier (C). Among possi-
bilities are: (1) A grand network driving function classifier
formed from the sum of the node driving functions: C(f)=2E,
(), i=1:K, summed across all nodes in the network, (2) a
grand network driving function classifier formed from the
logarithm of the product of the node driving functions:
C(H=Z log(E,()), i=1:K, summed across all nodes in the
network; or (3) A grand network driving function consecutive
difference formed from the absolute sum of the difference
between node driving functions summed over nodes and fre-
quency: C=22|AE,(f)I, i=1:K, f=1:nf.

In step 1020, the topological organization of the network
functionality may be determined from the cross-correlation
matrix of the node driving functions. Research has shown that
cortical networks may be described as small world networks,
mathematical graphs in which most nodes are not neighbors
of'one another, but can be reached from every other by a small
number of steps; the typical distance (the number of steps)
between two nodes in such scale-free networks is proportion-
ally to the logarithm of the number of network nodes. These
graphs may be classified by two independent structural fea-
tures: the clustering coefficient and the average node-to-node
distance (average shortest path length). Apparently, cortical
networks tend to have a small average shortest path length and
a large clustering coefficient since they consists of groups of
shortest paths nodes centered on hub nodes with a high degree
(i.e., number) of connections. Another measure is the effi-
ciency of the network in the parallel transfer of information.
These topological measures may correspond with the task
nature of the network. For example, a default network would
have less clustering and efficiency and be more spread out in
a form of ‘scale free’ network; a task focused network would
be spread out but with high degree and high diameter, as well
as high clustering and high efficiency; and a task response
network would be a ‘small-world’ network that has less
degree and diameter, and greater clustering and efficiency.
This determination may be used to cluster localized sources
into a single grand source of functionality.

In the remaining steps, the cognitive processing of the
network is determined, first by finding the functional activity
level of the network nodes, and from that the cognitive func-
tions as determined from the mapping of the source nodes to
the brain structure, in particular, to the cortical Brodmann
Areas with known brain functions. In step 1030, the active
source nodes of the network are determined from the statistics
of the node driving function database; in particular, from the
average and variance as a function of spectrum frequency,
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where the more active nodes will have spectrum peaks toward
the upper bounds of the confidence intervals for the dataset.

In step 1040, the nodes are mapped to cortical Brodmann
Areas in Talairach head space by their locations in the 4-shell
spherical head model. Brodmann Areas are regions of the
cerebral cortex having the same cytoarchitectural organiza-
tion of neurons (as defined and numbered by Brodmann in
1909). Again, Talairach space is a 3-dimensional coordinate
system of the human brain, which map the location of brain
structures using Brodmann areas as labels for both lateral and
median surface brain regions as derived by Talairach and
Szikla in 1967. In this process, the spherical head model may
be mapped to a standard cortical space reconstructed from
Montreal Neurological Institute (MNI) MRI data, and in turn
to the Talairach space for location as Brodmann Areas.

FIG. 11 is a schematic showing representative electrode
scalp sites (E1-E7) and a corresponding cortical source net-
work (S1, 82, S3) with network modulators (M1, M2), super-
imposed on a median view of the cortex, with numbered
Brodmann Areas (BA1, BA2, BA3, etc. indicated as boxes
labeled 1, 2, 3 . . . in this figure). Brodmann Areas represent
known regions in the cerebral cortex in the brain believed to
be responsible for discrete cortical functions.

For reference, the cortical lobes are also indicated: frontal,
central, parietal, occipital, and temporal, along with the
orbital frontal. In this schematic, the sources (S1, S2, S3, etc.)
are mapped to the median surface; however, mapping may
occur to the lateral surface as well depending upon the source
locations. In the schematic figure, cerebral source S1 is
mapped to BA31, S2 to BA24, and S3 to BA7, and in the
mapping take on the properties of the area. Here, in the figure,
the modulators M1 and M2 are shown located to the limbic
region, in particular, the thalamus as sources gating the con-
trol signals. But, the locations of other modulators will likely
be different.

In step 1050 (of FIG. 10), the cerebral source nodes are
mapped to cortical brain functions that are known for the
corresponding Brodmann Areas. There is evidence that the
occipital, somatosensory, and temporal cortical lobes are
organized as processors for primary sensory areas (vision:
BA17; somatosensory: BA1, 2, 3; temporal: BA41 for audi-
tory, BA43 for gustatory), and secondary sensory areas (Vvi-
sion: BA18; somatosensory: BAS5; temporal: BA42 for audi-
tory), association areas (vision: BA19; somatosensory: BA7;
temporal: BA22), along with multiple association areas in the
parietal and temporal (BA20, 21, 15), which in turn lead to the
frontal lobe for evaluation (BA9, 10, 11, 12), with pre-motor
frontal eye-fields for directed vision (BAS8), and secondary
motor (BA6) and primary motor (BA4) for action. Special-
ized temporal and frontal areas process language understand-
ing (BA39, 40) and generation (BA44, 45). These functions
may be specialized further by cortical hemisphere. In addi-
tion, the anterior cingulate is believed involved in error detec-
tion (BA24, 32) and the posterior cingulate in emotion
(BA23, 31). Further involved are the limbic system regions of
entorhinal cortex (BA34), perirhinal cortex (BA35), and the
ectorhinal area (BA36) of the perirhinal cortex, among others
for spatial memory and orientation. Of course, this is not a
complete rendition of all brain areas and associated functions.
Although these are coarse representations of functions con-
sidering the size of the Brodmann Areas probably each con-
taining millions of neurons, the mapping provides a basis for
considering the general nature of cortical processing.

In step 1060, the cortical brain functions of the source node
network are mapped to a cognitive processing network for
classification of attention to a task. In this process, the modu-
lator sources are a measure of the strength of attention, while
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the network topology corresponds to the cognitive involve-
ment. As has been mentioned above, a default network cor-
responding to self-referral has less clustering and efficiency
and is more spread out in a form of ‘scale free’ network; a task
focused network would be spread out but with high degree
and high diameter, as well as high clustering and high effi-
ciency; and a task response network would perhaps be a
‘small-world’ network that has less degree and diameter, and
greater clustering and efficiency. Further, the active sources
driving the network determine the state of task attention from
the corresponding Brodmann Areas as to sensory processing
(and as visual or auditory), association, evaluation and motor
involvement.
Example Demonstration of the Innovative Methodology

The aforementioned methodology was applied to the scalp
electroencephalogram data collected from fourteen subjects
in a temporal discrimination experiment conducted at the
U.S. Army Research Laboratory. The initial data was reported
by Hairston W D, Letowski T R, McDowell K [2010] in a
report titled “Low-level auditory processing as a predictive
tool for within- and cross-model performance,” presented at
the 27 Army Science Conference, Orlando, Fla., in which
the subjects judged which of two consecutive stimuli were
longer in duration. In one trial, the stimuli were auditory
while in another they were visual; a neutral baseline trial
without a stimulus was used as control. One of the stimuli of
the consecutive pair was randomly set at 250 ms while the
other was 400 ms in duration; they were separated by a 250 ms
interval, resulting in a 900 ms time period for the test stimulus
on-set to the response stimulus off-set. The subjects had two
seconds to respond by button push as to which was longer.

FIG. 12 is a schematic showing these events for a judgment
task comprising a preceding baseline, the test time period of
the test stimulus, a pause, and the response stimulus, and a
decision period followed by manual response. The inter-
stimulus interval (ISI) was varied randomly from 3 to 12
seconds. During the trials, the subjects were subjected to a
‘standard’ 100 ms, 220 Hz pure tone presented every 450 ms
(3% were an ‘oddball’ 247 Hz tone presented randomly);
subjects were told to ignore the background tones. The judg-
ment tasks were repeated in two trial sets for each type of
stimulus, including the neutral. The scalp electroencephalo-
gram data was collected using a 64-channel Biosemi active
electrode bio-potential system, sampled at 8.192 kHz (for a
separate auditory response analysis), and analog filtered at
0.1-4 kHz with external reference set to bilateral earlobes.
The scalp electrodes were in an extended International 10-20
Electrode system configuration; additional channels col-
lected vertical and lateral electro-ocular potentials (EOG) for
both eyes, as well as event markers for the stimuli onsets from
the experimental computer. In preparation for analysis of the
judgment tasks, the data was digitally low-pass filtered with a
cut-oft frequency of 256 Hz and down sampled to 512 Hz.
Data Reduction and Analysis Methodology

For analysis by the innovative methodology, the scalp elec-
troencephalogram dataset was processed to compute inde-
pendent cerebral sources, from which the node excitation
driving functions and corresponding modulators were com-
puted for network and statistical analysis. As shown in the
flow chart of FIG. 13, the process was performed in two
stages, with the first a pre-processing stage 1300 to compute
the cerebral sources for the EEG data base by first filtering to
remove baseline and preclude aliasing (for second stage
down-sampling) in step 1305, removal of obviously extreme
artifacts from the EEG in step 1310, application of indepen-
dent component analysis for the scalp voltage sources based
on kurtosis of the amplitude probability density functions in
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step 1315, the pruning of sources of remaining artifacts from
the source set in step 1320, and the saving of the resulting
un-mixing matrix for the cerebral sources in step 1325.

In the second processing stage 1350, the node driving
functions and resulting modulators were computed for the
sources from the EEG database for the test time period win-
dows. In this stage, the task windows were determined in step
1355 from the event marker channel, and the isolated EEG
segments were filtered and obvious artifacts removed in step
1360 as in the pre-processing stage, the source activation
signals were computed from the resulting EEG segments
using the un-mixing matrixes of the pre-processing stage for
the sources in step 1365, the activation signals were grouped
by the task events in step 1370, the multivariate spectrum
analysis was computed for the event activation segments fol-
lowing down-sampling in step 1375, the node driving func-
tions were accordingly computed for the sources from the
spectrum measures in step 1380, and in turn the modulators
for the source network in step 1385. This was repeated in step
1390 for all EEG test period windows in step 1387, and the
resulting functions parameterized for network and statistical
analysis in step 1395. Of further interest for analysis are the
differences between the driving functions by events and those
between the modulator signals by events as well. These steps
are described in detail in the following.

Pre-Processing Stage 1300—

The data set was processed by an automated computer
program incorporating script files calling EEGLAB Matlab
open source routines available for electrophysiological signal
processing, as follows:

The data was high-pass filtered using the ‘eegfilt.m’ routine
to remove baseline drift (1 Hz cutoff), and low-pass
filtered with a cut-off frequency of 64 Hz (needed to
preclude aliasing in down-sampling to a 128 Hz sam-
pling rate in the second stage to facilitate the application
of the autoregressive analysis).

The data was epoched into consecutive 0.5 sec intervals
(‘epoch.m’) and the baseline removed (‘rmbase.m’).

Artifacts were rejected by epochs using amplitude thresh-
old limits (eegthresh.m’), trend limit (rejtrend.m’),
improbable joint-probability  (jointprob.m’), and
improbable probability density distribution by kurtosis
(rejkurt.m’), with the trials selected for rejection by the
different methods ‘OR’ed together and removed from
the database.

An independent component analysis for independent
sources was performed on the remaining epochs using
the EEGLAB ‘runica.m’ iterative routine based on the
kurtosis probability density distribution, thereby
resulted in a component source set and an associated
component weights matrix (‘EEG.icaweights’) and
sphere whitening matrix (‘EEG.icasphere’).

The independent components sources were located as
dipoles in the standard MRI Spherical head model (stan-
dard_BESA/standard-10-5-cap385.elp), using the
EEGLAB DIPFIT2 routines.

Extraneous component sources were pruned by location,
spectra, and variance using laboratory written Matlab
routines on the following basis:

a. Location—Source spherical head locations on the skull
(electrode site) or outside the head (EMG source), below the
cranial (subcortical sources, EMG source), or in the frontal
eye-region (ocular muscle source);

b. Spectra—Source spectra not fitting the expected spectra for
an EEG source as being convex decreasing with frequency
(approximating 1/frequency?), and with excessive power in
the low frequencies below 2 Hz (eye-movements) or in the
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high frequencies above 30 Hz (muscular movements) com-
pared to the middle frequencies 5 Hz to 30 Hz, especially if
peaks in the theta, alpha, or beta range are missing; and

¢. Variance—Sources with minimal variance (power) are
dropped from the source set; in this study, the source set was
limited to the top ten acceptable sources as measured by
power variance; where the pruning process results in a rejec-
tion file (‘rejectfile’) being set for the sources that are pruned
by these methods.

An un-mixing matrix was computed for generating the
cerebral source component waveforms from the scalp
recordings, where the un-mixing matrix is the matrix
product of the component weights matrix (‘EEG.ica-
weights’) and sphere whitening matrix (‘EEG.icas-
phere’) for the data set.

Second Processing Stage 1350—

The data set was processed by an automated computer
program with laboratory written Matlab routines using the
original data set, as follows:

The data was high-pass filtered (here using the ‘eegfilt.m’
routine) to remove baseline drift (1 Hz cutoft), and low-
pass filtered with a cut-off frequency of 64 Hz to pre-
clude aliasing in the later operation of down-sampling to
a 128 Hz sampling rate.

The data was segmented by task time window event mark-
ers into a pre-test window baseline, the test stimuli seg-
ment, and the response segment for each of the tasks in
the data.

The event segments were processed for obvious artifacts as
in the first-stage using amplitude threshold limits, trend
limits, improbable joint-probability, and improbable
probability density distribution by kurtosis; segments
with artifacts were removed from further study.

Source activation signals were computed for the event seg-
ments using the source set and corresponding un-mixing
matrixes from the first stage.

The segment source activation signals were down-sampled
to a 128 Hz sampling rate, the base and trend removed,
and amplitude normalized by the standard deviation of
the resulting segments in preparation for spectrum
analysis.

Autoregressive coefficients and noise variance were com-
puted for the source set from the segment activation
signals by multivariate autoregressive analysis.

The segment spectrum matrix was computed for the source
set from the transfer functions (derived from the autore-
gressive coefficients) and noise covariance resulting for
the segment activation signals.

The source node driving functions were computed from the
cross and partial power spectrums, and the directed
transfer functions for the sources.

A set of parameters for the node driving functions was
computed from the coefficients of a polynomial curve
used for smoothing the function waveform (using ‘poly-
fitm’).

A function difference measure was computed as the abso-
lute difference in consecutive event polynomial curve
smoothed functions summed over the spectrum fre-
quency.

The source network modulators were derived from the
node driving functions by independent component
analysis following principal component analysis of the
function data; the modulator activations were computed
by applying the modulator un-mixing matrix to the driv-
ing function spectrums.
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A set of parameters for the modulator activations was com-
puted from the coefficients of a polynomial curve
smoothing the activation waveform.

A modulator difference measure was computed as the
absolute difference in consecutive event polynomial
curve smoothed activations summed over the spectrum
frequency.

Statistical Analysis—

The source nodes were matched across experiment partici-
pants to form equivalent variable sets for statistical
analysis from the ranking order of the independent com-
ponent signal power variance.

The polynomial fit coefficients used for smoothing the
modulators were analyzed in a linear model multivariate
statistical test on the experiment fixed factors of condi-
tion (visual, auditory, neutral), trial (first, second), and
event (baseline, stimulus, response), with subject
dummy variables included for repeated measures. A
similar test was done for the node driving functions
coefficients.

These test were repeated for the task events as a fixed
factor, where the baseline event was used for the neutral
condition since no stimulus was presented in this condi-
tion as a control; thereby accounting for the condition by
event interaction inherent in the original experimental
design.

The difference measures for the modulators and for the
node driving functions were statistically analyzed sepa-
rately for the effects of the experimental fixed factors of
condition, trial, and event, and of the task event as a fixed
factor.

The Holm-Bonferroni simultaneous test procedure was
used to control for the family-wise Type-I error by par-
titioning the overall alpha level of 0.05 among the family
of separate tests.

Cerebral Network Analysis—

The network parameters for the cerebral sources as a node
network were computed from the node driving functions, as
follows:

Smoothed node driving functions were computed for the

task events using the polynomial fit coefficients;

The spectral cross-correlations were computed for the
smoothed functions by spectrum lag (one-sided), using
the non-normalized sliding inner-product in the spec-
trum plane;

Cross-correlation matrixes were computed from the aver-
age correlations for each node combination;

Threshold values were computed for the cross-correlation
matrixes using the grand mean value and standard devia-
tion for the matrix (threshold=mean+1.96*std), and
thresholded matrixes were segmented as ‘background
noise’ elements for those values below the threshold and
‘object’ elements for those values above the threshold;
and

The thresholded correlation matrixes were used to com-
pute the properties of the nodes as a network, comprising
the node degree, clustering coefficient, shortest inter-
connection length, and efficiency.

Spectrum Measures

For reference, examples of spectrum measures resulting
from the multivariate spectrum analysis of the source activa-
tions are provided in the following spectrum plots for two
cerebral sources (selected by activation strength), of one sub-
ject in the visual trials. All plots are for the stimulus and
response events plotted from O to 40 Hz, unless indicated
elsewise. Considering the transfer functions computed from
the autoregressive coefficients, the transfer function magni-
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tude and phase frequency plots for the recursive loop of the
first source (IC1: strongest source) are shown in FIG. 14 and
FIG. 15, respectively. Further, the transfer function magni-
tude and phase frequency plots for the connectivity from the
first source (IC1) to a second source (IC4) are shown in FIG.
16 and FIG. 17, respectively. The figures show practically the
same spectrum for the first source in the stimulus and
response events, with the recursive loop transfer function
strongly peaked (maxima) at about 10 Hz and negative phase,
while the connectivity transfer function is practically flat with
unity magnitude and zero phase. For this source, the recursive
loop is amplitying at about 10 Hz feeding the noise power
back to the source, while the connectivity acts as a ‘short’,
passing noise power without effect.

Considering the power spectrums computed from the
transfer functions and the noise covariance, the auto-power
frequency spectrum for the first source is plotted in FIG. 18,
while the cross-power spectrum for the connectivity from the
first source to the second source is plotted in FIG. 19. The
auto-powers for the first source are practically the same for
the stimulus and response events, both peaking in power
spectrum density at about 10 Hz. The cross-powers for the
source connectivity are similar, both peaking about 10 Hz, but
the power spectrum density is much more for the stimulus
event than for the response event.

Next considering the normalized directed transfer func-
tions, the function for the recursive loop of the first source is
plotted in FIG. 20, while that for connectivity from the first
source to the second source is plotted in FIG. 21. The directed
transfer functions for the recursive loop are practically the
same for both the stimulus and response events with a peak at
about 10 Hz; the directed transfer functions for the source
connectivity are also practically the same, except here the
functions have a valley (minima) at about 10 Hz. The plots are
nearly mirror images with the transfer functions for the recur-
sive loop amplifying at about 10 Hz, while those for the
source connection suppressing power at that frequency.

Considering the source activation function, the function for
the first source is plotted in FIG. 22, while that for the second
source is plotted in FIG. 23. The activation functions for the
first source are practically the same for both the stimulus and
response events, peaking at about 10 Hz; while the activation
functions for the second source are dissimilar, with that for
the stimulus event peaked at about 10 Hz and that for the
response flat.

Looking at the source partial power, the power for the first
source is plotted in FIG. 24, while that for the second source
is plotted in FIG. 25. The partial power for the first source are
practically the same for both the stimulus and response
events, peaking at about 10 Hz; while the partial powers for
the second source are dissimilar, with that for the stimulus
event peaked at about 10 Hz and that for the response flat.

Now considering the source node excitation driving func-
tion, the function for the first source is plotted in FIG. 26,
while that for the second source is plotted in FIG. 27. The
functions are smoothed by a 5* order polynomial fit for the
stimulus event (solid line) and the response event (dashed
line), plotted from O to 40 Hz. The driving functions for the
first source are practically the same for both events peaking at
about 10 Hz and with a valley at about 20 Hz; while the
functions for the second source are dissimilar, with that for
the stimulus event fairly flat and that for the response with a
valley at about 7 Hz. In summary, it appears that the first
source is driving the network, while the second source is
passive and more so in regard to the response event.
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Statistical Results

Reported are the results for the statistical analyses of the
modulator source activations, the node driving functions, and
the family-wise significance of the tests.

Modulator Activations

Frequency plots for three modulators resulting from an
independent component analysis of all source driving func-
tions, are shown in FIG. 28, as smoothed curves averaged
across test participants for the baseline ([‘b’]), stimulus
([‘s’]), and response ([‘r’]) events of the three test conditions
(auditory, neutral, visual), plotted from O to 50 Hz. The plots
for the stimulus and response events in the auditory and visual
conditions are similar in a cyclic pattern of roughly 1 cycle
over 40 Hz centered on a spectrum peak about 20 Hz; how-
ever, the spectrums are more erratic for the baseline event in
the auditory and visual conditions and all events in the neutral
condition since no stimulus was presented in this condition as
a control. The modulators are ordered by variance as com-
puted in the independent component analysis, with the first
modulator having the strongest variance. The plots show that
the modulators S1 and S3 exhibits variations between the
events for the visual and auditory conditions in the 15-25 Hz
range, but not for the neutral condition; and that the remaining
source show little variation for all conditions. FIG. 29 shows
plots of the activation differences computed as the absolute
difference in consecutive event polynomial curve-smoothed
activations summed over the spectrum frequency. The plots
show valleys in the 30 Hz region for the base to stimulus, base
to response, and stimulus to response differences.

Parameterization—

A 4" order polynomial curve was fitted to the modulator
source excitation spectrums for all subjects; higher orders
resulted in ill-condition fits. Application of a Pearson Corre-
lation bivariate test showed that the coefficient poles tend to
correlated by source but not necessarily across sources; how-
ever poles for a source are significantly correlated at the 0.01
level (2-tailed). Applying a Factor analysis for dimension
reduction results in a single component extracted for each
source (based on Eigenvalues greater than 1), with at least
95% (95.02, 97.76, 97.48) of the variance explained. The
source factors were statistically analyzed separately for the
experimental treatments and for the event cases. Since this
resulted in one source as significant, the poles of that source
were analyzed in turn in the same manner.

Modulator Activation Pole Analyses—

The coeficients poles used in polynomial smoothing ofthe
primary modulator activation were statistically analyzed with
a general linear model multivariate statistical test, with sub-
ject dummy variables included for the repeated measures.
Experimental Treatments—

The statistical test is significant by treatments for condition
(Pillai’s trace=0.584, F=25.797, df=10, p=0.000), trial
(trace=0.352, F=33.968, df=5, p=0.000), and event
(trace=0.470, F=11.652, df=15, p=0.000); a test of effects
shows that lower order poles of the first modulator source are
significant by condition (p=0.000) and event (p=0.000). Mul-
tiple comparisons shows that these poles separate the neutral
condition from the others (neutral vs. auditory: p=0.004; neu-
tral vs. visual: p=0.003); and separate the events (baseline vs.
stimulus: p=0.001; baseline vs. response: p=0.000; stimulus
vs. response: p=0.007).

Events—

The test is significant by event type (Pillai’s trace=0.598,
F=15.788, df=15, p=0.000); a test of effects shows that the
lower order poles of the first modulator source are significant
(p=0.000). Multiple comparisons shows these poles separates
the types (baseline vs. stimulus: p=0.000; baseline vs.
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response: p=0.000; stimulus vs. response: p=0.000). FIG. 30a
is an Error Bar plot (95% CI) for the first source average by
event type. The figure suggests that the measure separates the
stimulus (3005) and response (3010) from the event baseline
(3015) but not from each other. Further, there is no separation
between a pre-baseline (3020) and the event baseline (3015),
as would be expected.

Modulator Activation Differences—

The difference measure for the primary modulator was
statistically analyzed in a linear model multivariate statistical
test on the experimental conditions, with subject dummy
variables included for the repeated measures; a similar statis-
tical test was performed on the event types.

Experimental Treatments:

The statistical test is significant by treatments for condition
(Pillai’s trace=0.160, F=10.448, df=6, p=0.000), and event
(trace=0.133, F=5.600, df=9, p=0.000), but not the trials; a
test of effects shows that the first source is significant by
condition (F=29.075, df=2, p=0.000), and event (F=13.839,
df=3, p=0.000). Multiple comparisons show significant sepa-
ration of conditions (neutral vs. auditory: p=0.000; neutral vs.
visual: p=0.000; auditory vs. visual: p=0.000).

Events:

The test is significant by event type (Pillai’s trace=0.227,
F=9.951, df=9, p=0.000); a test of effects shows the first
source is significant (F=31.523, df=3, p=0.000). Multiple
comparisons show significant separation of the baseline from
the stimulus and response (baseline vs. stimulus: p=0.000;
baseline vs. response: p=0.000). FIG. 305 is an Error Bar plot
(95% CI) for the first source difference measure by event
type. The figure suggests that the measure significantly sepa-
rates the stimulus (3055) and response (3060) from the event
baseline (3065) but not from each other. Further, there is no
separation between a pre-baseline (3070) and the event base-
line (3075), as would be expected.

Node Driving Functions

Similar patterns occur with the node-excitation driving

functions for all participants as with the modulator
sources. Again, a 4” order polynomial fit was applied to
the driving function spectrums for all subjects; higher
orders resulted in ill-condition fits. And application of a
Pearson Correlation bivariate test showed that the poles
tend to correlated by driving function source but not
necessarily across sources; however poles for a source
are significantly correlated at the 0.01 level (2-tailed).
Note that the visual and auditory trials commonly con-
tained 50 stimulus events.

Node Driving Function Pole Analyses—

The coefficients poles used in polynomial smoothing of the
driving functions were statistically analyzed with a general
linear model multivariate statistical test, with subject dummy
variables included for the repeated measures.

Experimental Treatments:

The statistical test is significant by treatments for condition
(Pillai’s trace=0.715, F=2.983, df=100, p=0.000), trial
(trace=0.482, F=4.969, df=50, p=0.000), and event type
(trace=0.710, F=1.669, df=150, p=0.000); a test of effects
shows that lower order poles of most sources are significant
by condition and event. Multiple comparisons show that these
poles significantly separate the neutral condition from the
auditory and visual, and the baseline event from the stimulus
and response.

Events:

The test is significant by event type (Pillai’s trace=0.881,
F=2.260, df=150, p=0.000); a test of effects shows that the
lower order poles are significant at the p=0.000 level. Mul-
tiple comparisons show that these poles separate the baseline
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from the stimulus and response. FIG. 31a is an Error Bar plot
(95% CI) for the average measure by event types; the plot
shows that the events are well separated. The figure suggests
that the measure significantly separates the stimulus (3105)
and response (3110) from the event baseline (3115) but mar-
ginally separate one baseline from the other (3120).

Node Driving Function Differences:

The difference measure for driving functions was statisti-
cally analyzed by a general linear model univariate analysis
of variance with subject dummy variables.

Experimental Treatments:

The statistical test is significant by condition (F=50.354,
df=2, p=0.000), and event (F=20.209, df=3, dfe=13,
p=0.000), but not trial; multiple comparisons shows signifi-
cant differences among conditions (p=0.000).

Events:

The test is significant by event type (F=46.636, df=3,
p=0.000); multiple comparisons show significant differences
among types (p=0.000). FIG. 315 is an Error Bar plot (95%
CI) for the difference measure by event types; the plot shows
that the events are well separated. The figure suggests that the
measure significantly separates the stimulus (3155) and
response (3160) from the event baseline (3165). Further,
while there is separation between a pre-baseline (3170) and
the event baseline (3165) suggesting an overly sensitive mea-
sure, the separation is slight compared to that for the baseline
to the stimulus and response events.

Family-Wise Statistics

The Holm-Bonferroni simultaneous test procedure is used

to control for the family-wise Type-I error by partition-
ing the overall alpha level of 0.05 among a family of
tests. In this study, all statistical tests by treatments for
condition and event, and all tests for event type, are
significant at p=0.000, and therefore are family-wise
significance.

Cortical Network Analysis Results

The cross-correlation matrix of the node-excitation driving
functions may be used to derive network properties as a small
world network, such as the node degree and network connec-
tivity. The average cross-correlation matrices of the node
driving functions computed from non-normalized sliding
inner product by (one-sided) frequency lag are shown as
gray-scaling of color-coded figures along with a full scale
color-bar for the event classes in FIG. 32 (color bar left end:
minimum correlation value, right end: maximum value),
along with the matching thresholded matrices. In the original
color-coded figures, the higher correlation values were coded
in red and the lower values in blue. For the full cross-corre-
lation matrix in grayscale, the intermediate correlation is in
the lighter shade 3210, the low correlation in the dark shade
3220, and the high correlation in intermediate shade 3230.
For the thresholded matrix in grayscale, the high correlation
is in the lighter shade 3240 while the low correlation is in the
darker shade 3250. The abscissa ofthe graph (horizontal axis)
corresponds to the function held constant in the correlation;
the ordinate to the function indexed (lowest to highest, top to
bottom). The diagonal elements correspond to the node auto-
correlation which is unity at zero lag; the distribution is not
necessarily uniform about the diagonal because of the one-
sided correlation process. Threshold values are computed for
the thresholded cross-correlation matrixes using the grand
mean value and standard deviation for the matrix
(threshold=mean+1.96*std), and resulting matrixes are seg-
mented as ‘background noise’ elements for those values
below the threshold and ‘object’ elements for those values
above the threshold.
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Network Properties

Cortical networks may be described as small world net-
works, mathematical graphs in which most nodes are not
neighbors of one another, but can be reached from every other
by a small number of steps; the typical distance (the number
of steps) between two nodes in such scale-free networks is
proportionally to the logarithm of the number of network
nodes. These graphs may be classified by two independent
structural features: the clustering coefficient and the average
node-to-node distance (average shortest path length). Corti-
cal networks tend to have a small average shortest path length
and a large clustering coefficient since they consists of groups
of shortest paths nodes centered on hub nodes with a high
degree (i.e., number) of connections. Another measure is the
efficiency of the network in the parallel transfer of informa-
tion. The network properties are computed from the cross-
correlation matrices as described below.

Node Degree Distribution:

The degree of a node (vertex) is the number of connections
(edges) with other nodes in a network. The degree of the
network is the average across all nodes. The connections are
determined from a binary cross-correlation matrix computed
from the original using a threshold 0 0.817 (mean of 0.778+
1.96%*std dev 0f0.019); nodes are connected if the correlation
exceeds this value. Theresult is a set of sub-graph matrices for
the direct neighbor nodes of each sub-graph index node. Table
1 of FIG. 33 lists the node degrees by event class. The table
shows that the base and stimulus event networks have a high
degree of connectivity as compared to the response network,
and that the first, seventh, eighth, and ninth have a high degree
of connectivity across event classes as opposed to the other
nodes; however, there is wide spread of node degree within
event classes.

Clustering Coefficient:

The absolute clustering coefficient of a node is the ratio of
the number of existing connections to the number of all pos-
sible connections; the absolute clustering coefficient of the
network is the average of all nodes. The existing connections
are computed from the correlation weights for the connec-
tions of the binary matrix. The number of all possible con-
nections are computed from the node degree (d,) given in
Table 1, as d,*(d,—1)/2. Table 2 of FIG. 33 lists the clustering
coefficients by event class; the table shows higher clustering
for the stimulus and response networks than for the base, and
that the third node has high clustering across event class
compared to the other nodes.

Shortest Path Length (Diameter):

The diameter of the network is related to the length of the
shortest path between any two nodes. Here, the path length is
computed as the inverse of the correlation weights for the
connections of the binary correlation matrix. Table 3 of FIG.
33 listing the path lengths by event class, shows that the
response network has the shortest path length as compared to
the other networks; and that the first, seventh, eighth, and
ninth have a longer path length across event classes as
opposed to the other nodes. It is noted that the average path
length is on the order of that expected for a cortical network as
a scale-free network with uncorrelated power law distribution
(average distance diameter of In(In(10))=0.834).

Efficiency:

The efficiency is a measure of the fault tolerance resulting
from parallel transfer in the network and is computed as the
inverse of the harmonic mean of the minimum absolute path
length between each pair of nodes; the network global effi-
ciency is here computed as the average of local node effi-
ciency. The local efficiency is a measure of the connectivity
remaining in a sub-graph when the index node is removed.
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Table 4 of FIG. 33 listing efficiencies by event type, shows
that the base network has lower efficiency as compared to the
other networks, and that the third node has higher efficiency
across event types as compared to the other nodes.

Network Metrics:

Table 5 of FIG. 33 shows a table of the summary metrics for
the event type networks; as presented in Table 6, the results
suggest that the base network with less clustering and effi-
ciency and more spread out is a form of ‘scale free’ default
network, the stimulus network is a focused task related net-
work (‘scale-free’) spread out with high degree and high
diameter, and high clustering and high efficiency, and the
response network is a task related ‘small-world’ network that
has less degree and diameter, and greater clustering and effi-
ciency. Note that the average diameter for a scale-free net-
work is on the order of In(In(10))~0.83.

Event Type Network Nodes:

Table 7 of FIG. 33 shows the assignment of the source
nodes to the event type networks. The assignments are
derived from the network metrics using the Matlab clustering
routine ‘kmeans.m’ to minimize the sum over all clusters of
the within cluster sums of metric point-to-point distances for
a specified number of clusters.

Cortical Network

In this step, the source nodes for an event type network are
mapped to the Brodmann Areas of the human brain cortical
regions. In this process, the source locations in the spherical
head coordinates may be converted into Talairach-space coor-
dinates using standard transformations (see, e.g., http://scc-
n.ucsd.edw/wiki/A08:_DIPFIT), from which the cortical
structure and the corresponding Brodmann Areas may be
derived using the ‘Talairach Client’ brain gray matter map-
ping software (see, e.g., http://www.talairach.org/client.h-
tml). FIG. 34 shows sources located in a three-dimensional
MRI projection Talairach head space, as point dipoles gray-
scale colored white (without orientation indicated) located
within the region 3405. The projection shows a lateral mid-
sagittal view of the cortex 3410 with the skull at the inion
3425, a frontal coronol view of the cortex 3420, and a trans-
verse view 3425, In further embodiment, the Brodmann Areas
for the event networks may be isolated from the network
source nodes as determined from Table 7.

FIG. 35 shows a network for the events with the Brodmann
Areas involved superimposed on a side view of the cortex
with lobes indicated. Here, the network includes cognitive
functions for stimulus analysis (BA 9, BA 22), association
(BA 23), recognition (BA 20), error detection (BA 32), pre-
motor planning (BA 6), and spatial locating (BA 7) presum-
ably of the choice response button. Note that not all cortical
sources map to Broadman Areas in the neocortex region, but
some may instead be in the allocortex; here, the network
includes a node (*) for the claustrum structure in the sub-lobar
lobe for timing in the stimulus and responses events. Sources
in the base network are grayscale colored gray, those of the
stimulus white, and the response dark gray. Information flow
is shown by the directed line.

FIG. 36 shows a network isolated for the stimulus and
response events with cognitive functions for attention (BA
31), association (BA 29), decision (BA 32), planning (BA 6),
motor execution (BA 4) and somasthetic processing (BA 1, 2,
3) which involved in the response presumably occurs with the
finger execution and consequent touch sensation (BA 5) at the
completion of the execution. Sources in the stimulus network
are grayscale colored white, and the response dark gray.
Information flow is shown by the directed line. Finally, FIG.
37 is a flowchart showing the cognitive functions of FIG. 36
organized by activity and the associated Brodmann Areas for
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the stimulus and response events. The chart shows the flow of
activity from initiation of the stimulus event (grayscaled
white) to the response event (grayscaled dark) and task
completion.

Results Summary

All tests by treatment condition and event, and by event
case of modulator and node measures from polynomial fits
and differences are family-wise significant. All measures of
the primary modulator source and of the node driving func-
tions are statistically significant by treatment conditions and
event, and separate the base event from the others; most
measures separate the stimulus from the response, as well.

Considering the effects of the modulator sources, the
source with strongest variance (the primary source), is sig-
nificant by treatment condition and event, and by event case,
as measured by the lower order poles of a polynomial fit or by
the absolute differences. Considering the effect comparisons
for this modulator source, all measures separate the stimulus
from the response, and the base event from the others.

With respect to the node-excitation driving functions, most
nodes are significant by treatment condition and event, and by
case, as measured by the higher order poles of a polynomial
fit, and separate the stimulus from the response, and the base
event from the others. Considering the node poles, all lower
order poles separate the base from the others, and most lower
order poles separate the stimulus from the response, as well.
The implication is that the function base and trend and less so
the quadratic, are most sensitive to the treatments including
the event class.

Of the measures derived from the node-excitation driving
function, the most sensitive to a change in event case appears
to be the node absolute grand difference, since this measure
strongly separates the stimulus from the response, as well as
both events from the base. This sensitivity increases with
sample size by increasing averaging over samples before
computing the absolute difference.

Representative modulator source spectrums computed
from the average polynomial poles are nearly linear increas-
ing functions of frequency more so for the stimulus than the
base and less so for the response. The spectrums are maxi-
mally separated about 30 Hz in the high-Beta frequency
range. Similarly, the representative node driving functions are
linearly increasing functions of frequency peaking about 30
Hz; the spectrums are separated in the Beta range centered
about 30 Hz and in the alpha range centered about 10 Hz.

Node network properties computed from thresholded
cross-correlation matrices show differences by event case in
such parameters as node degree distribution, clustering coef-
ficient, network diameter (shortest path length), and effi-
ciency. The average path length is on the order of that
expected for a scale free network with uncorrelated power law
distribution, commonly found for cortical networks.

A representative cortical source network is derived for the
node network by clustering the sources weighted by the net-
work properties for the event classes; the cortical source set is
mapped into Talairach-Space coordinates for which equiva-
lent cortical labels including Brodmann Areas are derived
using the “Talairach Client” gray matter mapping; the net-
work source activations derived from the correlation matrices
are mapped to cognitive functional areas through the corre-
sponding Brodmann Areas resulting in a network model of
cortical functions for the event cases.

In particular, as would be expected, the methodology iso-
lates sources located at BA 31 for pre-attentive processing
and at BA 29 for association that are involved in both the
stimuli and response events; a source at BA32 for decision
involved in both events, while a source at BA6 for motor
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planning is involved in the stimuli event presumably for plan-
ning the response and a source at BA4 for executing the alert
orientation. Furthermore, the source at BA 4 (motor execu-
tion) and one at BA3 for somasthetic processes are involved in
the response event presumably with finger execution to a
button and touch sensation at completion of the execution.
Applications of Disclosed Methodology

The invention has various applications. One is as a com-
ponent of an automated aiding system in the electronic aiding
of tasks performed by human operators for crew-served sys-
tems including aiding for operators of combat vehicles and
robotic control stations, by providing an estimate of brain
functions from electroencephalogram measurements. Mod-
ern combat systems are increasingly operated autonomously
by on-board electronic systems with the operator in a super-
visory role; manual intervention may be called for by the
electronic system only in critical moments. In such incidents,
the electronic aider may constitute a display organizer, which
electronically aware of the task priorities, schedules the infor-
mation needs for the task and arranges such in a display
format that is in a manner supportive of the performance by
the operator; in particular, such corresponding to a cognitive
flow rate in the operator that is compatible with control
dynamics that may be needed for a task. Essential to the
functioning of the display organizer is the development of a
control strategy that comprises specifying a reference course
of action to be executed, and a schedule of task events com-
posed of time periods and sub-tasks to be enabled during the
time periods for the course, where the sub-tasks are ordered
from task initiation to task completion by the operator.

A common design feature of the electronic aider is an
embedded model of operator cognitive attention that with
knowledge of task demands may be used for scheduling the
information display. In some designs, the model may com-
prise an information processing model with cognitive proces-
sors controlled by a model executor, and rules for the activa-
tion of the corresponding processors along with associated
task times and cost elements based on mapping attributes of
cognitive attention. Still further, in some designs the model
may be incorporated within a skills-based, rules-based, and
knowledge-based model of cognitive processing; where the
executor recalls task rules from the knowledge base and in
evaluation sets up the rules for activation, the rules base
processor activates the rules directing control, and the skills
based processor controls the task execution. With this model,
a control strategy for scheduling displays is determined by a
process that with access to the processor task times and cost-
elements, computes associated cost variables for sub-task
combinations; and selects the optimal cost schedule to best
facilitate task cognitive attention. In this process, cognitive
attention is used as a metric for the event sub-tasks, where the
attention is an element of an attention state set ranked by the
degree of cognitive involvement of such ordered from task
initiation to task completion. In further elaboration, the rank-
ing is by the states of orientation, task recall, task focus,
option review and decision, activation, and continual control.
Here, reference is made to U.S. patent application Ser. No.
13/721,161, filed Dec. 20, 2012, and further to U.S. patent
application Ser. No. 13/792,585, filed Mar. 11, 2013, both by
the inventor, for further teachings of modeling task attention.

An important step in the scheduling process is knowledge
of the attention state of the human operator, since a fully
ordered schedule sequence starting from initiation could
interrupt the cognitive flow being executed by the operator,
who may already be involved in the task. The interruption
may disorient the operator resulting in an evaluation of the
displays, and consequently poor performance until the opera-
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tor recovers. For this reason, the scheduling is initialized from
the task attention state of the operator as determined by an
electronic task attention processor from measurements from
the operator, such as eye movements and eye-gaze fixations,
measurements of the state of brain cognitive functions, and
manual activity in performance of the tasks, as well as the
state of the task performance. In this design, the invention as
embodied below estimates the states of the cognitive proces-
sors of the scheduling model for the task attention processor
from the brain cognitive functions as determined from elec-
troencephalogram measurements. Since the skill controlling
brain processes are sub-cortical, they cannot be readily deter-
mined from electroencephalogram measurements using stan-
dard technology, and the state of the model skill processor is
estimated by the task attention processor from the skill-based
ocular and manual activities. Further, the relation of the
operator’s attention to the task is determined by the task
attention processor from the status of the task. Here, reference
is made to U.S. Pat. No. 8,708,884 by the inventor, titled:
“Systems and methods for adaptive mitigation of motion
sickness,” herein incorporated by reference, for further teach-
ings of reducing operator activities to estimates of the cogni-
tive attention state. Having described the role of the invention
as a component of the electronic aiding system (via the task
attention processor), an embodiment for this application is
now elaborated.

In application, an embodiment of the invention is executed
in two stages, with a first training stage using an initial set of
Electroencephalogram (EEG) scalp recordings data to auto-
matically derive independent sources representative of the
cerebral functions and a classifier based on the source driving
functions, and a second application stage sequentially esti-
mating the source activations from short term data segments.
Parameterization kernels composed as the node driving func-
tions may be derived from the source estimated activations for
classifying the associated cortical functionality in real time.
The same date reduction is applied to the raw data in both
stages to ensure stochastic consistency.

The training stage comprises three steps. In the first step,
automatic artifact rejection algorithms are applied to the data
set to prune epochs and channels of extreme noisy sets; then
following application of blind-source separation analysis, the
resulting set of independent sources are automatically pruned
of contaminated sources leaving a set of cerebral sites repre-
sentative of cerebral functions as well as the associated mix-
ing weight matrixes. In the third step, the sources are clus-
tered to form representative networks which are then
parameterized, the results of which along with event indices
are used to train a state classifier for real-time application.

The application stage comprises a continual sequence of
short term scalp recorded data segments to which the un-
mixing weight matrixes are applied following automatic arti-
fact adjustments, to estimate the independent source activa-
tion datasets for the segment window. Parameterization
kernels are applied to the source activations for classifying the
associated cortical functionality in real time. In the present
design, multivariate autoregressive and spectral analysis is
applied to compute the kernel measures composed as the node
driving functions from source auto and cross power, and
directed transfer functions.

An embodiment of the invention is shown in FIG. 38, with
the embodiment 3800 including of a set of electronic hard-
ware and/or software modules, with a control module 3805, a
module 3810 for preparing collected EEG samples for stimuli
modality response cases of interest in application from the
base set, a module 3820 for signal processing of the case
sample, a module 3830 for locating cortical sources of the
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case sample as a training set, a module 3840 as a knowledge
base containing the case source information, a module 3850
for spectral analyzer of the source activations derived from
the case sample, a module 3860 for training a cognitive state
classifier from the spectral analysis of the training set and the
task knowledge 3870, and a module 3880 for classifying the
sample as to cognitive state following classifier training. The
modules are activated by the control module 3805 in different
combinations depending upon whether the set is for training
or a normal application. The modules may be activated for
training in the sequence of preparing a set of training samples
for case 3810, signal processing 3820, source location 3830,
spectral analysis 3850, and classifier training 3860, from the
training set spectral analysis and the task knowledge base task
knowledge 3870, resulting in un-mixing matrixes for the
sources saved in knowledge base 3840 and the classifying
parameters in 3860 for reference. In application, the cognitive
state is determined by the module 3810 preparing samples by
case, signal processor 3820, spectral analysis 3850 of the
source activations using the un-mixing matrixes from 3840,
and classitying the cognitive state using the parameters from
3860. Applications may be for different stimuli modality
response cases with the samples processed at a preferred
sampling rate, montage, and reference electrode site maxi-
mizing signal contrasts for each case, although reference
electrode choice does not affect source localization. The
module 3810 prepares a case sample from the original base
data set with the sampling rate derived from the base rate by
filtering and down sampling, and the montage and reference
electrode from adding the base set site voltages for the pre-
ferred configuration. An example is that of processing an
auditory data set for three dimensional auditory cueing by
binaural cues from sub-cortical auditory brain stem fre-
quency-following responses with a base set possibly sampled
at 10 kHz, external reference set to bilateral earlobes, and
digitally high-passed filtered at 40 Hz and low-passed at 1.5
kHz; and from audio cerebral responses from the auditory
cortex with the base set low-pass digital filtered at 40 Hz and
down-sampled to 256 Hz, and reference of a common refer-
ence electrode (sum of all site voltages). Resetting the sam-
pling frequency for the audio cerebral response reduces the
pole order needed for representation as an autoregressive
process to a practical level for application of the invention.
FIG. 39 is a flow chart showing the training sequence
method 3900 in detail, starting with collecting the scalp site
EEG for a training data set in step 3910 and marking the set by
task events in step 3920 that occurred during the collection
process. Then, for all stimuli modality cases, the data set is
configured for analysis for a case in step 3930, pre-processed
in step 3940 by obvious artifact corrections for analysis,
determining a set of cortical sources of the scalp signals in
step 3950 and in the process saving the corresponding un-
mixing matrixes of the source activation signals in step 3955
for reference in the application, and determining the node
driving functions in step 3960 for the sources. Once com-
pleted for all cases in step 3965, the sets of node driving
functions may be used to compute network modulators in step
3970 with accompanying un-mixing matrices, compute node
network parameters in step 3975, and using these parameters,
compute node network metrics in step 3980, and having
located the sources in a cortical space, map the sources to the
cortical Brodmann Areas in step 3985 for associate functions.
These parameters may then be used to train a cognitive clas-
sifier by events in step 3990, and those of the classification
saved in step 3995 for application. In one embodiment, these
functions may be performed with the techniques described in
the demonstration section, where for example, the artifact
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correction is by extreme scalp signal amplitude, trend, spec-
trum, or kurtosis, following filtering and baseline correction.
Determining the cortical sources may be by blind-source
temporal separation based on kurtosis, with pruning of
sources of artifact from the source set by spectrum and cor-
tical location. The node driving functions may be determined
from spectrum analysis based on multivariate autoregressive
analysis of the source activation signals. Further, the network
modulators may be determined by blind-source separation
from the node driving functions following principal compo-
nent analysis to reduce the function spectrum dimensionality.
Techniques have been described above for computing net-
work parameters from the cross-correlation matrix of the
node driving functions, the metrics from the parameters,
locating the sources from triangulation of the scalp signals,
and mapping the source locations in the spherical head coor-
dinates into Talairach-space coordinates for locating the cor-
responding Brodmann Areas.

FIG. 404 is a flowchart of the application sequence method
4000, applied continually during application following
completion oftraining. In each application cycle, a short-term
scalp site EEG data set is collected in step 4005 in overlapping
time windows in step 4010, then for each stimuli modality
response case, the windowed data set is treated in the same
way as for the training sequence, with the set configured for
the case in step 4015 and artifact corrections applied in step
4020, then the source activations are generated from the
treated scalp signals with the un-mixing matrix in step 4025,
a multivariate autoregressive analysis applied to the activa-
tions in step 4030, spectrum measures computed from the
autoregressive coefficients and noise covariance in step 4035,
and source node driving functions computed from the spec-
trum measures in step 4040. Once completed for all cases in
step 4045, the sets of node driving functions may be used to
compute network modulators in step 4050 with the un-mixing
matrices from training, compute node network parameters in
step 4055, and using these parameters, compute node net-
work metrics in step 4060, and having located the sources in
a cortical space, map the sources to the cortical Brodmann
Areas in step 4065 for associated cognitive functions. These
parameters may then be used with the cognitive classifier to
classify the cognitive state using the classification weights
from training in step 4070, with the state estimate as output. In
one embodiment, these functions may be performed with the
techniques applied in the training sequence. The validity of
the process depends upon the stochastic stability of the EEG
process since the cortical sources from the training are
assumed to remain consistent over the application period. For
this reason, the application may periodically in step 4080
request an update of the sources and classifier information
with the short term raw EEG data added to an extended data
file in step 4085 and an update request flag set in step 4090 for
a standalone update module. Following the update check, the
application cycle is repeated in step 4095, until the applica-
tion is completed.

FIG. 405 is a flowchart for the standalone update module
4100, which once the update flag is set in step 4105, calls for
the update of the sources and un-mixing matrixes by cases in
step 4110, and updates the classifier parameters in step 4115
using the extended EEG data base with the routines of the
training sequence, then clears the update flag in step 4120 in
preparation for the next request.

In one embodiment shown in FIG. 41, the classifier 4150
can be a knowledge base system configured as an expert
system 4180, with an input buffer 4183, knowledge base
4185, inference engine 4187, and inference rules 4189, with
input 4160, here shown as data on the network modulators
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(IM), network metrics (net), and source Brodmann Areas
(BA), and brain cognitive state output 4170. In further
embodiment, the input may include the node-excitation driv-
ing functions as well. In this design, the input buffer may store
time-wise sequential values. The knowledge base asserts rela-
tions among the inputs and the cognitive states depending
upon the values, with the network modulators on network
control, the network metrics on the type of network, and the
Brodmann Areas on the network functions. The inference
engine is an automated reasoning system that evaluates the
current state of the knowledge-base, applies relevant rules,
and then asserts new knowledge into the knowledge base
using in one embodiment ‘if-then’ rules based on parameters
set in the training session. In other embodiments, the classi-
fier may be of different designs including those of discrimi-
native models that maximize the output based on a training
set, such as a logistic regression model, a support vector
machine maximizing the margin between a decision hyper-
plane and the training set, or a multiple layered perceptron
configured as an artificial neural network with nodes in an
input, output, and hidden layers, with the nodes between
adjacent layers connected with weighted links.

In this design, the cerebral cortical source nodes may be
mapped to Brodmann Areas and the corresponding brain
functions. As mentioned above, the occipital, somatosensory,
and temporal cortical lobes are organized as processors for
primary sensory areas (vision: BA17; somatosensory: BA1,
2, 3; temporal: BA41 for auditory, BA43 for gustatory), and
secondary sensory areas (vision: BA18; somatosensory:
BAS; temporal: BA42 for auditory), association areas (vision:
BA19; somatosensory: BA7; temporal: BA22), along with
multiple association areas in the parietal and temporal (BA20,
21, 15), which in turn lead to the frontal lobe for evaluation
(BA9, 10, 11, 12), with pre-motor frontal eye-fields for
directed vision (BAS8), and secondary motor (BA6) and pri-
mary motor (BA4) for action. Specialized temporal and fron-
tal areas process language understanding (BA39, 40) and
generation (BA44, 45). These functions may be specialized
further by cortical hemisphere. In addition, the anterior cin-
gulate is believed involved in error detection (BA24, 32) and
the posterior cingulate in emotion (BA23, 31). Further
involved are the limbic system regions of entorhinal cortex
(BA34), perirhinal cortex (BA35), and the ectorhinal area
(BA36) of the perirhinal cortex, among others for spatial
memory and orientation.

Further, the cortical brain functions of the source node
network may be mapped to the cognitive processing network
for classification of attention to a task. In this process, the
modulator sources are a measure of the strength of attention,
while the network topology corresponds to the attention
involvement. As has been mentioned above, a default network
corresponding to self-referral has less clustering and effi-
ciency and is more spread out in a form of ‘scale free’ net-
work; a task focused network would be spread out but with
high degree and high diameter, as well as high clustering and
high efficiency; and a task response network would perhaps
be a ‘small-world’ network that has less degree and diameter,
and greater clustering and efficiency.

In some embodiments, the classifier outputs of the brain
cognitive state may be mapped through the knowledge base of
the expert system to the state of information processing as
expressed by a cognitive processing model for the human
operator, and in particular, to the states of the separate pro-
cessors making up the model from the corresponding cortical
networks. In this process, the cortical structure as located by
the Brodmann Areas of the network may be mapped to a
model of information processing, where in some designs,
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these models comprise cognitive processors controlled by a
model executor, and rules for the activation of the correspond-
ing processors as components of an information processing
network. As has been mentioned, the model may be incorpo-
rated within a skills-based, rules-based, and knowledge-
based model of cognitive processing; where the executor
recalls task rules from the knowledge base and in evaluation
sets up the rules for activation, the rules base processor acti-
vates the rules directing control, and the skills based proces-
sor controls the task execution. In this model, the levels of
involvement of the processors depend upon the attention state
of the network as determined by the executor.

There is a neurological basis for the validity of such a
model within the human cerebral cortex with presumably the
executor mapped to the orbitofrontal cortex believed involved
in planning, the knowledge base to the temporal lobes, the
rules processor to the anterior parietal and the pre-motor
cortex with control setting to the motor cortex. The skills
processor may be mapped to the cerebellum with a reference
setting from the motor cortex and visual offset from the
pontine nuclei via the posterior parietal for foveal vision or
even directly from the visual cortex for peripheral vision.
Further, the reference may be set by the parietal cortex in
visual-egocentric coordinates for comparison to delayed
visual returns. The cerebellum is believed essential to coor-
dinating motor limb and digit movements. Each of these
centers taken together may comprise cortical attention net-
works for eye-movements, working memory, spatial distribu-
tion, and temporal expectation, within the frontal, temporal
and parietal brain regions. Again, reference is made to U.S.
patent application Ser. Nos. 13/721,161, 13/792,585, both by
the inventor, for further teachings of modeling task attention.

FIG. 42 is a schematic showing an embodiment of the
invention which is configured as a component of an auto-
mated aiding system 4200 for an operator including activity
behavior and physiological measurements, with the invention
providing an estimate of the brain functions from electroen-
cephalogram measurements. Here, the operator 4202 is
attending to a task aid 4207 presented on a display 4205. In
some embodiments, an operator’s electroencephalogram
(EEG) measurements are made with scalp skin-surface elec-
trodes for EEG 4242, the signals of which are input to a brain
function assessor 4240. In some embodiments, the EEG
recording may be made from a scalp cap of multiple elec-
trodes judiciously distributed about the scalp (for example, in
a standard 10-20 International System electrode configura-
tion, or the like), all with amplifiers having output to the
assessor 4240. Limb activity may be measured with an
actimeter with embedded accelerometers attached to the wrist
and output 4222 to motor activity estimator 4220. The video
output from the video camera 4215 goes to an eye tracker
4250 with eye-movement processor 4255, and output of eye-
movements and fixation patterns 4257. The output 4245 from
the brain function assessor 4240, the output 4224 from the
motor activity estimator 4220, and the output 4252 from the
eye-movement processor 4257, are inputs to a task attention
state assessor 4260. The output 4262 of task attention state
assessor and the task needs 4274 from the autonomous oper-
ating system are inputs to the electronic aider 4270, with
output 4272 to the display driver 4280, scheduling the updat-
ing of the aid display cue. In this aiding system, the invention
estimates the states of the cognitive processors of the sched-
uling model for the electronic task attention processor from
the brain cognitive functions as determined from electroen-
cephalogram measurements.

Various embodiments, implementations, and application
of the present invention may be embodied as a plurality of
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electronic modules, for example. The electronic modules
may be implemented as hardware, software or a combination
thereof. The modules may be implemented with a computer
of computing device having one or more processors (or
micro-processors) as known in the art that are specifically
configured to execute coding necessary to implement
embodiments of the present invention. Processor-executable
instructions can be stored in a memory device and execute by
the processors when needed. In some implementations, soft-
ware code (instructions), firmware, or the like, may be stored
on a computer or machine-readable storage media having
computer or machine-executable instructions executable by
the processor(s). The processor(s) may be a programmable
processor, such as, for example, a field-programmable gate
array (FGPA) or an application-specific integrated circuit
(ASIC) processor. The methodology disclosed herein may be
implemented and executed by an application may be created
using any number of programming routines, such as MAT-
LAB. Of course, any number of hardware implementations,
programming languages, and operating platforms may be
used without departing from the spirit or scope of the inven-
tion. As such, the description or recitation of any specific
hardware implementation, programming language, and oper-
ating platform herein is exemplary only and should not be
viewed as limiting.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments. How-
ever, the illustrative discussions above are not intended to be
exhaustive or to limit the invention to the precise forms dis-
closed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
present disclosure and its practical applications, to thereby
enable others skilled in the art to best utilize the invention and
various embodiments with various modifications as may be
suited to the particular use contemplated.

Various elements, devices, modules and circuits are
described above in associated with their respective functions.
These elements, devices, modules and circuits are considered
means for performing their respective functions as described
herein. While the foregoing is directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

All patents, patent applications, articles and other refer-
ences mentioned herein are hereby incorporated by reference
in their entireties.

I claim:

1. A method for estimating brain activity of a human sub-
ject from electrical voltage potentials from scalp site mea-
surements of electroencephalograms (EEG) that is executed
by an electronic processor comprising electronic modules,
the method comprising:

receiving measurement signals for actual scalp site voltage

potentials which originate from an EEG collection sys-
tem worn by the subject;

specifying, by an electronic module, a plurality of cortical

neural sources of electrical potentials in the cerebral
cortex of the brain of the subject;

using a model of the human brain which treats the cortical

neural sources as nodes connected together in a cortical
source network topologically distributed in the cerebral
cortex, estimating, by an electronic module, cortical
source activations from actual scalp site voltage poten-
tials measured by electrodes of the EEG collection sys-
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tem worn by the subject for each of the cortical neural
sources in the network for the subject;

determining, by an electronic module, source network

modulation electrical control signals for the subject
from the cortical source activations which are assumed
to correspond to neural control modulators in the human
brain; and

computing, by an electronic module, a network activity

classification from determined modulation electrical
control signals as an estimation of brain activity of the
subject,

wherein, estimating the cortical source activations com-

prises computing a node-excitation driving function for
each of the cortical source nodes of the network, where
eachnode is assumed to constitute an activation function
formed from weighted inputs, a node-excitation driving
function, and an emitter function formed from weighted
outputs, and where inputs to each node comprise signal
power spectrums from nodes of the network and the
weights are measures of the directed causality of the
spectral power transfer between nodes.

2. The method of claim 1, wherein the node-excitation
driving function is computed from a multivariate spectral
analysis of the network node excitations which determines
autoregressive coefficients and a noise covariance resulting in
node power spectrums and inter-node transfer functions.

3. The method of claim 2, wherein the signal power spec-
trums constitute cross-power spectrums for connections
between the different nodes of the network and auto-spec-
trums for recursive feedback by the nodes, the directed cau-
sality weights are determined as inter-node directed transfer
functions, and partial spectrum powers are computed for the
nodes from the signal power spectrums.

4. The method of claim 3, wherein the node-excitation
driving function for each node is computed from anode signal
partial power spectrum and a node activation function, where
the node activation function is computed as the sum of the
signal power spectrums inputs weighted by corresponding
normalized transfer functions computed from the inter-node
directed transfer functions.

5. The method of claim 1, wherein the modulation electri-
cal control signals of the network control modulation nodes
are determined from the node-excitation driving functions for
the nodes of the network.

6. The method of claim 1, wherein the network activity
classification is determined from the modulation electrical
control signals of the network control modulation nodes, as
derived from the node-excitation driving functions of the
nodes of the network.

7. The method of claim 1, wherein the network activity
classification is used to estimate activities of tasks performed
by the subject during operation of a machine, from a cortical
topological organization of the node network as derived from
the node-excitation driving functions for the source activa-
tions of the nodes of the network.

8. The method of claim 7, wherein the network is a cortical
attention network including attention to task activities of task
default, task focus, task involvement, or any combination
thereof.

9. The method of claim 7, wherein the network activity
classification is determined for a task activity by mapping the
network cortical sources to the cortical structure of the brain
as cortical network nodes related to cognitive functions,
including at least to the structural level of the Brodmann Area
regions of the cortex with associated cognitive functions.

10. The method of claim 9, wherein the network activity
classification is used to determine a task activity level from
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the cortical structures of the cortical network as derived from
the network source node excitation driving functions for the
corresponding source activations of the nodes of the network.

11. An apparatus for estimating brain activity of a human
subject from electrical voltage potentials from scalp site mea-
surements of electroencephalograms (EEG), the apparatus
comprising an electronic processor which comprises:

an electronic module configured to receive measurement

signals for actual scalp site voltage potentials which
originate from an EEG collection system worn by the
subject;

an electronic module configured to specify a plurality of

cortical neural sources of electrical potentials in the
cerebral cortex of the brain of the subject;
an electronic module configured to use a model of the
human brain which treats the cortical neural sources as
nodes connected together in a cortical source network
topologically distributed in the cerebral cortex, in order
to estimate cortical source activations from actual scalp
site voltage potentials measured by electrodes of the
EEG collection system worn by the subject for each of
the cortical neural sources in the network for the subject;

an electronic module configured to determine source net-
work modulation electrical control signals for the sub-
ject from the cortical source activations which are
assumed to correspond to neural control modulators in
the human brain; and

an electronic module configured to compute a network

activity classification from determined modulation elec-
trical control signals as an estimation of brain activity of
the subject,

wherein, estimating the cortical source activations com-

prises computing a node-excitation driving function for
each of the cortical source nodes of the network, where
eachnode is assumed to constitute an activation function
formed from weighted inputs, a node-excitation driving
function, and an emitter function formed from weighted
outputs, and where inputs to each node comprise signal
power spectrums from nodes of the network and the
weights are measures of the directed causality of the
spectral power transfer between nodes.

12. The apparatus of claim 11, wherein the node-excitation
driving function is computed from a multivariate spectral
analysis of the network node excitations which determines
autoregressive coefficients and a noise covariance resulting in
node power spectrums and inter-node transfer functions.

13. The apparatus of claim 12, wherein the signal power
spectrums constitute cross-power spectrums for connections
between the different nodes of the network and auto-spec-
trums for recursive feedback by the nodes, the directed cau-
sality weights are determined as inter-node directed transfer
functions, and partial spectrum powers are computed for the
nodes from the signal power spectrums.

14. The apparatus of claim 13, wherein the node-excitation
driving function for each node is computed from anode signal
partial power spectrum and a node activation function, where
the node activation function is computed as the sum of the
signal power spectrums inputs weighted by corresponding
normalized transfer functions computed from the inter-node
directed transfer functions.

15. The apparatus of claim 11, wherein the modulation
electrical control signals of the network control modulation
nodes are determined from the node-excitation driving func-
tions of the nodes of the network.

16. The apparatus of claim 11, wherein the network activity
classification is determined from the modulation electrical
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control signals of the network control modulation nodes, as
derived from the node-excitation driving functions of the
nodes of the network.

17. The apparatus of claim 11, wherein the network activity
classification is used to estimate activities of tasks performed
by the subject during operation of a machine, from a cortical
topological organization of the node network as derived from
the node excitation driving functions for the source activa-
tions of the nodes of the network.

18. The apparatus of claim 17, wherein the network is a
cortical attention network including attention to task activi-
ties of task default, task focus, task involvement, or any com-
bination thereof.

19. The apparatus of claim 17, wherein the network activity
classification is determined for a task activity by mapping the
network cortical sources to the cortical structure of the brain
as cortical network nodes related to cognitive functions,
including at least to the structural level of the Brodmann Area
regions of the cortex with associated cognitive functions.
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